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Bioluminescence tomography (BLT) is an important noninvasive optical molecular imaging
modality in preclinical research. To improve the image quality, reconstruction algorithms have to
deal with the inherent ill-posedness of BLT inverse problem. The sparse characteristic of
bioluminescent sources in spatial distribution has been widely explored in BLT and many
L1-regularized methods have been investigated due to the sparsity-inducing properties of L1

norm. In this paper, we present a reconstruction method based on L1=2 regularization to enhance
sparsity of BLT solution and solve the nonconvex L1=2 norm problem by converting it to a series
of weighted L1 homotopy minimization problems with iteratively updated weights. To assess the
performance of the proposed reconstruction algorithm, simulations on a heterogeneous mouse
model are designed to compare it with three representative sparse reconstruction algorithms,
including the weighted interior-point, L1 homotopy, and the Stagewise Orthogonal Matching
Pursuit algorithm. Simulation results show that the proposed method yield stable reconstruction
results under di®erent noise levels. Quantitative comparison results demonstrate that the pro-
posed algorithm outperforms the competitor algorithms in location accuracy, multiple-source
resolving and image quality.

Keywords: Bioluminescence tomography; L1=2 regularization; inverse problem; reconstruction
algorithm.

1. Introduction

Bioluminescence tomography (BLT) is a powerful
preclinical imaging modality that localizes and
quanti¯es internal bioluminescent sources with

images of the light emitted through the animal

surface. It provides a method of quantitative mea-

suring and visualizing a range of molecular and

cellular-level biological processes that occur in vivo
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in small animals with the help of bioluminescent
reporters.1–4 It has found a wide range of biomedical
applications in drugs development and therapies
evaluation for cancer researches.5–8

To reconstruct three-dimensional distributions of
sources from the collected boundary measurements,
both a forward model for simulating light transport
and an elaborate inverse algorithm are required.
Given a model describing light transport in tissue
and the optical properties of the object to be im-
aged, the key problem of inverse algorithm is to deal
with the severe ill-posedness of BLT and hence to
produce e±cient and stable reconstruction.

Regularization is an essential technique to stable
the solution by combining a priori information into
inverse problem solving. The sparse characteristic
of bioluminescent sources in spatial distribution
has been widely explored in BLT and many
sparse regularization methods have been investi-
gated.3,4,9–11 Among them, L1 regularization is the
most popular one due to its e±ciency. However, the
study in the context of sparse signal recovery or
compressed sensing has shown that Lp norm
(0 < p < 1) regularizations yield better solutions for
sparse problems compared with L1 norm.11,12

Theoretical analysis and experimental results has
proved that fewer measurements are enough for
sparse signal recovery with Lp regularization. Be-
sides, the L1=2 regularization has been recognized as
a representative of Lp (0 < p < 1).13

Although the nonconvexity of Lp norm incur
computational complexity with p < 1, Lp regul-
arization has attracted considerable attention in
various applications. In optical imaging, Lp regu-
larization has been used in di®use optical tomog-
raphy (DOT)14 for the improvement of image
quality. Recently, nonconvex Lp regularizer ¯nd its
place in °uorescence molecular tomography (FMT)
for sparsity enhancement.15–21 Chen et al. intro-
duced Lp regularizer into BLT and proposed the
weighted interior-point algorithm (WIPA) for
solving the nonconvex optimization problem.22

In this paper, we present a L1=2 norm-based re-
construction algorithm for BLT. Like the method
proposed in Ref. 22, we solve the nonconvex objec-
tive function by converting it to a series of weighted
L1 minimization problems. Instead of interior-point
method, a homotopy-based method is used in this
paper to obtain fast and accurate solution of the
reweighted L1 problem and perform an internal
\adaptive reweighting" after every homotopy step.

The paper is organized as follows. In Sec. 2, we
brie°y introduce the modeling of BLT and describe
the proposed reconstruction method based on L1=2

norm regularization in detail. Simulation experi-
ments based on a heterogeneous mouse model are
presented in Sec. 3. To assess the performance of the
proposed algorithm, we compared our L1=2 norm
method with three representative sparse recon-
struction algorithm, including the WIPA22 for L1=2

regularization, the homotopy method for L1 mini-
mization (L1 homotopy),23 and the Stagewise
Orthogonal Matching Pursuit (StOMP).24

2. Method

2.1. Forward problem of BLT

In this study, the di®usion approximation to radi-
ative transport equation is used to depict the for-
ward model. The di®usion equation (DE) with the
Robin boundary condition is described as follows3:

�r � ðDðrÞrBðrÞÞ þ �aðrÞBðrÞ ¼ SðrÞðr 2 �Þ;
ð1Þ

BðrÞ þ 2AðrÞDðrÞðvðrÞ � rBðrÞÞ ¼ 0ðr 2 @�Þ; ð2Þ
where r 2 R3 represents the position, SðrÞ describes
the space and angle distribution of the internal
source. BðrÞ represents the power density at r; v is
the outer normal vector on @�, and AðrÞ denotes
the mismatch factor of boundary. In Eq. (1),DðrÞ ¼
1=ð3ð�aðrÞ þ ð1� gÞ�sðrÞÞÞ is the di®usion coe±-
cient with g the anisotropy parameter, �aðrÞ being
the absorption coe±cient and �sðrÞ the scattering
coe±cient.

We can derive the following linear model by
solving DE with the ¯nite element method (FEM):

AX ¼ B; ð3Þ
where A is a weight matrix that founds the rela-
tionship between the measurements and the
unknowns. Vector X denotes the distribution of
bioluminescent source and vector B represents the
measurable boundary data.

2.2. L
1/2

norm reconstruction method

Equation (3) is an under-determined and ill-
conditioned system, and thus various regularization
techniques have been used to deal with the high
ill-posedness of the inverse problem. For instance,

J. Yu, Q. Li & H. Wang

1750014-2

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
8.

11
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

U
A

Z
H

O
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 o

n 
09

/1
3/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



currently popular L1 regularization methods
formulate the BLT inverse problem as an optimi-
zation problem with L1-norm penalty term:

min
X

1

2
jjAX �Bjj22 þ �jjXjj1; ð4Þ

where � denotes the regularization parameter and
jjXjj1 ¼

PN
i¼1 jxij is the L1 norm.

To obtain better solutions, we use a L1=2 regu-
larization model for sparse BLT reconstruction. By
replacing the L1 norm term in Eq. (4) with L1=2

quasi-norm penalty, we obtain the following L1=2-
regularized optimization model:

min
X

1

2
jjAX �Bjj22 þ �jjXjj 121

2

; ð5Þ

where jjXjj 121
2

¼ Pn
i¼1 jxij 12 . The simpli¯ed form of

Eq. (5) is

min
X

1

2
jjAX �Bjj22 þ �

Xn
i¼1

jxij 12: ð6Þ

Unlike L1 norm model, the objective with L1=2

penalty is nonconvex and incurs computational
complexity to the least squares problem in (6).
Considerable e®ort has therefore been devoted to
such nonconvex problems.25 In this study, we em-
ploy an iterative reweighting method.26,27

Since
Pn

i¼1 jxij1=2 ¼
Pn

i¼1ð1=
ffiffiffiffiffiffiffijxij

p Þjxij, we can
transform Eq. (6) to

min
X

1

2
jjAX �Bjj22 þ �

Xn
i¼1

ð1=
ffiffiffiffiffiffiffi
jxij

p
Þjxij: ð7Þ

Thus, we obtain a weighted L1-norm problem
which we can solve it iteratively.13 Let wi ¼ �ffiffiffiffiffiffi

jx t
ij

p ,
we get:

Xtþ1 ¼ argmin
X

1

2
jjAX �Bjj22 þ

Xn
i¼1

wijxij: ð8Þ

In this way, the intractable L1=2 norm problem is
converted into a series of weighted L1 minimization.
For sparse reconstruction problem, there exist many
zero elements in X. To guarantee numerical sta-

bility, we take wi ¼ �ffiffiffiffiffiffi
jx t

ij
p

þ�
in our implementation,

where � is a small number.
In a common iterative reweighting approach, we

need re-compute weights at every iteration using
the solution X at the previous iteration. To obtain
fast and accurate solution of the reweighted L1

problem in (8), we employ the homotopy-based

algorithm to perform an internal \adaptive
reweighting" after every homotopy step. Therefore,
the following homotopy program was used:

min
X

1

2
jjAX �Bjj22 þ

Xn
i¼1

ðð1� �Þwt þ �wtþ1Þjxij;

ð9Þ
where � is a homotopy parameter and when it
changes from 0 to 1, the new weight phase in and
the old one phase out. At any value of �, the X�
must satisfy the following optimality conditions28:

aT
i ðAX� �BÞ ¼ �ðð1� �Þwt þ �wtþ1Þzi
for all i 2 �

ð10aÞ

jaT
i ðAX� �BÞj < �ð1� �Þwt þ �wtþ1

for all i 2 �c;
ð10bÞ

where � denotes the support of X�; ai is ith column
of A and z denotes the sign sequence of X �. When
increase � up to �þ �, the @X will direct the moving
of solution, and the optimality condition will
change to:

AT
�ðAX� �BÞþ �AT

�A@X¼ �ðð1��ÞWtþ�Wtþ1Þz
þ �ðWt�Wtþ1Þz

ð11aÞ

aT
i ðAX� � �Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

pi

þ� aT
i A@x|fflfflfflffl{zfflfflfflffl}
di

�������

�������1
� ð1� �Þwt þ �wtþ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

qi

þ � ðwt þ wtþ1Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
si

;

ð11bÞ
where Wt and Wtþ1 are j�j � j�j diagonal matrices
with diagonal entries being the values of wt and
wtþ1 on �, respectively. And the update direction
speci¯ed by the conditions (11a) as:

@X ¼ ðAT
�A�Þ�1ðWt �Wtþ1Þz on �

0 on �c

�
: ð12Þ

When we increase �, the solution moves based
on the direction @X until either a new element
enters the support of solution or an existing element
turns to 0. The step-size that takes the solution to
such a critical value of � can be computed as

Source reconstruction for BLT via L1=2 regularization
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�� ¼ minð�þ; ��Þ, where:

�þ ¼ min
i2� c

qi � pi
�si þ di

;
�qi � pi
si þ di

� �
þ

�� ¼ min
i2�

�x�
i

@xi

� �
þ

; ð13Þ

�þ is the smallest step-size that makes a constraint
in (11b) active, indicating entry of a new element in
the support, whereas �� is the smallest step-size
that shrinks an existing element at �� to 0. The new
critical value of � turns to �þ ��, the solution X�
turns to X� þ ��@X, where the support and sign
sequence are updated accordingly. At each homo-
topy step, we jump from one value of � to the
next while updating the support of the solution,
until � ¼ 1.

In our experiment, we set the initial solution as
X0 ¼ ð1; . . . ; 1Þ, which means that we use the so-
lution of the L1 homotopy algorithm as the ¯rst
iteration solution. The iterative reconstruction

algorithm will stop when the iteration number
t reaches the maximum iteration limit K (K ¼ 10
for the following simulations). Figure 1 describes
the speci¯c steps of the proposed reconstruction
algorithm (IRW-L1=2, for short).

3. Simulation Studies on the

Mouse Atlas

In this section, a series of simulations on a digi-
mouse model were conducted to assess the perfor-
mance of the proposed reconstruction algorithm
IRW-L1=2. For comparison, we chose three repre-
sentative algorithms to investigate, including the
WIPA, L1 homotopy and StOMP. The mouse atlas
is a digital mouse which provides anatomical in-
formation.29 The optical properties of digimouse are
listed in Table 1.30 The body section with a length
of 34mm was selected in the following simulations.

Several groups of simulations were designed to
assess the location accuracy and source resolving
ability of the four testing algorithms in single-source
and double-source reconstruction scenarios. We also
investigated the in°uence of measurement noise and
optical properties of tissues on the algorithms with
single-source simulations.

The reconstruction results were evaluated by not
only visual inspection but also quantitative metrics

Fig. 1. Flow chart of the IRW-L1=2 algorithm.

(a) (b)

Fig. 2. (a) The torso of the mouse atlas model with a cylin-
drical source in the liver, (b) forward mesh and the simulated
photon distribution on the surface.

Table 1. Optical parameters for the mouse organs.

Tissues Muscle Lungs Heart Liver Kidneys Stomach

�a [mm�1] 0.23 0.35 0.11 0.45 0.12 0.21

� 0
s [mm�1] 1.00 2.30 1.10 2.00 1.20 1.70

J. Yu, Q. Li & H. Wang
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including location error (LE) and contrast-to-
noise ratio (CNR) of the reconstructed image. LE
is the distance between the reconstructed source
center and the actual one. CNR is de¯ned as
follows31:

CNR ¼ �ROI � �BCK

½!ROI�
2
ROI þ !BCK�

2
BCK�1=2

; ð14Þ

where �ROI is the mean values of the ROI
(the region of interest) and �BCK is the mean values
of the variable background. �ROI and �BCK are
the standard deviations of the ROI and back-
ground, respectively. !ROI and !BCK are weighting
factors.

The algorithms were coded in MatlabTM and
operated on a PC with 3.3GHz Intelr CoreTM i5-
4590 and 8GB RAM. The threshold for StOMP and
the regularization parameters for WIPA, IRW-L1=2

and L1 homotopy were selected manually in the
following simulations.

Fig. 3. Reconstruction results by the four algorithms in single-source simulation. The top row shows the 3D views of results by
IRW-L1=2, WIPA, L1 homotopy and StOMP, respectively. The bottom row shows the corresponding transverse views at z ¼ 18mm,
where the actual source center located.

Table 2. Reconstructed location error under di®erent noise
levels (mm) in single-source case.

Noise level 0% 5% 10% 15%
Method

IRW-L1=2 0.48064 0.48064 0.48067 0.48070

WIPA 0.51805 0.51804 0.51803 0.51811
L1 homotopy 0.52492 0.52491 0.52498 0.52057
StOMP 0.50179 0.50180 0.50179 0.50178

Table 3. CNR under di®erent noise levels in single-
source case.

Noise level 0% 5% 10% 15%
Method

IRW-L1=2 12.5196 12.5196 12.5204 12.5212

WIPA 8.2055 8.2057 8.2014 8.1959
L1 homotopy 10.0940 10.0945 10.0945 10.0917
StOMP 11.8834 11.8835 11.8836 11.8831

Source reconstruction for BLT via L1=2 regularization
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3.1. Reconstruction of single-source

In the ¯rst group of simulations, a cylindrical
source was put in the liver, as shown in Fig. 2(a).
The source with a radius of 0.5mm and height of
1mm centered at (10mm, 15mm, 18mm). And
the magnitude of the actual source was set to be
1 nW/mm3.

To obtain simulated measurements, the mouse
model (with source) was discretized into a FEM
mesh including 99340 tetrahedral elements and
17956 nodes. Figure 2(b) exhibits the surface dis-
tribution. A coarser mesh consisted of 16755 ele-
ments and 3201 nodes were used for reconstruction,
and we used all of the surface measurements of the
torso section to reconstruct the target with the four
algorithms. Besides, di®erent levels (5–15%) of
Gaussian noise were added to the simulated mea-
surement to test the stability of reconstruction
algorithms.

Tables 2 and 3 summarize the average LE and
CNR of 10 times running of each algorithm under
di®erent noise levels (except the noiseless case), re-
spectively. Figure 3 shows the transverse views at
z ¼ 18mm and 3D views of the reconstruction
results in noiseless case. From Tables 2 and 3, we
observed very small °uctuation for all the testing
algorithms, which means all reconstruction algo-
rithms performed quite stable under noise condi-
tions. However, quantitative comparison results
shown in tables demonstrate that the proposed
IRW-L1=2 algorithm slightly outperformed the
competitors in location accuracy and image quality
in single-source case.

3.2. Reconstruction single-source

located in di®erent tissues

Considering that the optical properties and depth of
the source vary from tissue to tissue, we designed a

Fig. 4. Simulated photon distribution on the surface for single-source located in di®erent tissues.

(a) (b)

Fig. 5. Comparison results in reconstruction of single-target located in di®erent tissues (a) Location error. (b) CNR.

J. Yu, Q. Li & H. Wang
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group of simulations to investigate the performance
of the algorithms in reconstructing single-target
located in di®erent tissues. We tested four cases
with a same source placed in muscle, lung, liver and
kidney, respectively. Figure 4 shows the simulated
photon distribution on the surface for single-
source located in di®erent tissues. Figure 5 plots the
comparison results of the algorithms in location

error and CNR. We observed that IRW-L1=2 out-
performed WIPA, L1 homotopy and StOMP in the
most of the di®erent cases.

3.3. Reconstruction of double-source

In this case, two identical cylindrical sources were
placed at S1¼(9,7,20mm) and S2¼(13,7,20mm) in
liver, with a 4mm separation distance between
centers. In forward calculation, the mouse model
with double-source was discretized into a mesh in-
cluding 103813 elements and 18634 nodes. Figure 6
exhibits the source setting and the simulated sur-
face distribution in this case. The mesh used for
reconstruction consisted of 15957 elements and 3042
nodes. Since the results in Sec. 3.1 show that mea-
surement noise had less impact on the four testing
algorithms, the following reconstructions were con-
ducted under noise free condition.

Figure 7 shows that reconstructed result by the
four di®erent algorithms. From Fig. 7, we observed
that the two targets reconstructed by IRW-L1=2

concentrate in two localized regions close to actual

(a) (b)

Fig. 6. (a) Source setting and (b) the simulated photon dis-
tribution on the surface in double-source case.

Fig. 7. Reconstruction results by the four algorithms in double-source simulation. The top row shows the 3D views of results by
IRW-L1=2, WIPA, L1 homotopy and StOMP, respectively. The bottom row shows the corresponding transverse views at z ¼ 20mm,
where the actual source centers located.

Source reconstruction for BLT via L1=2 regularization
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source centers. Nevertheless, there exist larger
deviations in the results by WIPA, L1 homotopy
and StOMP. Table 4 summarized the quantitative
results in terms of reconstructed source centers, lo-
cation error for each source and CNR. The results
shown in Fig. 7 and Table 4 demonstrate that IRW-
L1=2 signi¯cantly outperformed the other competi-
tors in double-source case.

4. Discussion and Conclusion

This paper presents an e±cient source reconstruc-
tion method for BLT based on L1=2 regularization.
Due to the nonconvexity of the objective, we con-
vert the L1=2-regularized problem into a series of L1

minimization problems by iterative reweighting
approach, and perform a homotopy-based algo-
rithm to obtain fast and accurate reconstruction.

The simulation results for single-source recon-
struction on a digital mouse model indicate that the
proposed source reconstruction method IRW-L1=2

outperforms the three representative sparse algo-
rithms in location accuracy and CNR. The simula-
tion results under di®erent noise levels and di®erent
tissues show the stability of the proposed method.
The double-source case results also demonstrate the
superiority of the IRW-L1=2 in resolving multiple
sources.

Although the simulation results based on animal
atlas are competitive, further investigations with
phantom and in vivo experiments are necessary for
an overall assessment of the proposed method,
which will be one of our future works. On the basis
of the simulations, we speculate that the proposed
IRW-L1=2 is a promising reconstruction method for
BLT applications.
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